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The accommodation coefficients, which characterize energy and 
momentum transfer in the problem of the interaction of a rarefied gas 

with a surface, can be calculated by analyt ical  or numerical methods 

in which the ini t ia l  disturbances of the crystal lat t ice are taken into 

account or ignored. This necessitates replacement of the infinite three- 
dimensional crystal of the solid, depending on the approximate for- 

mulation of the problem, by a finite one-, two-, or three-dimensional 

assembly of atoms connected by particular bonds or without such bonds. 

The accuracy of the result when this replacement is made has to be 
assessed. 

In [1] the zones of free movement and strong interaction in a two- 

dimensional model were determined, and in [2] estimates were made 

of the length of the chain of atoms involved in the collision act  in the 

one-dimensional case. In this paper we investigate the effect on the 

accommodation coefficients of the size of the block of solid atoms 

which are implicated in the collision and are taken into consideration 

in the case of interaction of a gas atom with a surface. 

In the one-dimensional problem all  the atoms of the chain at the 

ini t ia l  instant have random (in direction and magnitude) displacements 

from the equilibrium position and vibration velocit ies.  

The dependence of the energy and momentum accommodation 

coefficients on the ini t ia l  conditions and gas parameters is determined, 

and the number of atoms in the chain which affect the accuracy of 

calculation of the accommodation coefficients for a prescribed inter- 

action energy is estimated. 

In the two- and three-dimensional cases the forces of interaction 

of the surface atoms with the incident gas atom are estimated. With 
increasing distance from the target atom the forces diminish, and, 
hence, it makes sense to obtain information about the number of 
surface atoms which are directly implicated in the collision act,  in 

addition to the target atom, and affect the value of the accommoda-  
tion coefficients. 

After the appropriate evaluations the solid can be regarded as a 
finite three-dimensional crystal.  We describe the method and the 

scheme of calculat ion of the energy and momentum transfer between 
the rarefied gas and the solid surface. 

The atoms in the lat t ice are connected with one another by elas-  
tic forces proportional to the displacements from the equilibrium posi- 

tions. The displacements and velocit ies of the atoms in the crystal at 
the in i t ia l  instant, defined as the start of interaction with the gas 

atom, have random magnitude and direction. The gas atoms have a 

macrovelocity which corresponds to an interaction energy of ~ 5 -  

-10  eV, and have a Maxwellian thermal-veloci ty  distribution. The 
interaction is assumed to be col lect ive ,  i .e . ,  at the individual gas 

atom collides with the whole block of solid atoms. The individual 

accommodation coefficients are calculated in relation to the ini t ia l  

position and veloci ty of the gas atom. The values are averaged over 

the parameters which determine the in i t ia l  state of the interacting 

system and the corresponding averaged accommodation coefficients 

are calculated.  The interaction between the gas and crystal atoms 

conforms to the Lennard-Jones law [the (6-12) potential  is used in 
the calculations]. 

1. The system of equations of motion for the gas atom and the 

linear chain of solid atoms interacting through the potential r can 
be written in the form (see [3, 4]): 

t dtp(:~) I drp(xl) t 

ah (T) = I/2 Ix0 (v) --  ~2 (r)], 

�9 ,~ (~) = % [x,~_l (T) - x,~,~ (~)l (n >/- 3). (1.1) 

Here k is the constant of the force of interaction between the links 

of the chain; p is the ratio of the masses of the gas and chain atoms; 

7 is the reduced time; X2n+l(r) and xm(r  ) and Xzn(f ) are, respectively, 
twice the relat ive displacement of the n-th and (n -~ 1)-th atom and 

the velocity of the n-th atom. We assign a (6-12) Lennard-Jones po- 
tential  to the interaction of the gas atom and the first atom of the 
chain and put a ~ = 2~/oZk. 

We assume that al l  the displacements are referred to a/2; a is the 
lat t ice spacing; e, and o are parameters of the Lennard-Jones poten- 

t ial .  We take the positive direction along the chain axis as the direc- 

tion towards the gas atom and assume that the zone of free motion is 
a distance of 2a from the equilibrium position of the first chain atom 

and the maximum amplitude of the lat t ice point does not exceed a/2, 
so that the relat ive displacements of the points will be in the interval 
[ - - 1 , . . . ,  0 , . . .  ,§ Since the model is suitable only for small  dis- 
placements, this interval in the ini t ia l  conditions is reduced by an 

order. In relat ive magnitudes the range of variation of the velocit ies 
of the la t t ice  atom velocities will  be included in the same interval.. 

Table 1 

~ t ~ 6  

�9 a n (1)* 

lO O.1 0.01 0.170 0.310 5 
10 0.3 0.01 0.334 0.556 4 
10 0.5 0.0i 0.608 0.846 
t0 0.9 0.01 0.9t0 0.992 3 
10 0.1 0.1 0.288 0.493 1 
i0 0.3 0.1 0.580 0.723 2 
t0 0.9 0A 0.966 0.999 

�9 i00 0.9 0. t  0.899 0.990 
100 0. t  0.0t 0.088 0.t65 
100 0.5 0.0t 0.69t 0.905 
I00 0. t  0.001 0.052 0.100 
100 0.3 0.00i 0.240 0.422 
100 0.5 0.00i 0.535 0.784 
i00 0.9 0.00t 0.870 0.983 
500 0.5 0.0i 0.590 0.830 
500 0.5 0.001 0.535 0.785 

�9 These co lumns  g i v e t h e  numbers  o f t h e  cu rves i l l u s t r a t ed  in Figs. 

0t n 

0.169 
0.329 
0.677 
t.000 
9.273 
0.59i 
0.926 
0.899 
0.084 
0.680 
0.052 
0.246 
0.530 
0.854 
0.592 
0.537 

1 and 2. 

n ~ t 0  

0.309 
0.550 
0.887 
1.000 
0.472 
0.832 
0.995 
0.989 
0A61 
0.898 
OAOt 
0.43i 
0. 778 
0.979 
0.834 
0. 786 

(2)' 
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The energy of the incident atom is prescribed by the parameter l ,  

which is given by the equality Mr0 z/2 = ~l . 

Thus, the in i t ia l  conditions for system (1.1) can be written as; 

x0(0) = 1/~'~ / ~ ,  

z'l (0) = 4 --  {1}, 
~ ( 0 )  = {n- -  l} (n >~ t ) ,  

x s n + ~ ( O ) = { n } - - { n + t  ) (n>~ t ) .  (1.2) 

Here the collision parameters ate l, p, and a ~  denotes the set 

of uniformly distributed random numbers in the interval [--0.1,+0.1]. 

System (1.1) with ini t ial  conditions (1.2) was solved numerical ly 

on a computer for a fixed number n. It is known that if  the vibration 

phase of the chain atoms is ignored the energy accommodation coef- 

f icient  depends significantly only on the first five atoms [2]. Hence, 

in the calculations we considered 6 m 20 atoms, which correspond to 

an order of 14 to 42 for the system of equations. The calculations were 

carried out for parameters g = 0.1-0.8;  l = 10-500; cr ~ = 10-1-10 -3 

and various sets of in i t ia l  conditions. 

Comparative graphs of the velocit ies x0 of the gas atom for two 

values of n (6 and 10) are given in Figs. 1 and 2, respectively. The 

calculations show that the chain length, beginning at the sixth to 
seventh atom, has very l i t t le  effect on the transmitted momentum and 

energy. The interaction t ime is practically unchanged. Only the quali-  

tat ive picture of the vibrations of the disturbed chain (and the gas 

atom along with it ,  if  capture occurs7 is different when its length is 

different. The distant atoms are only slightly disturbed. The accom- 

modation coefficients a n and cr for the normal momentum and energy 
for some interaction parameters are given in Table 1. 

A comparison of the obtained values of the coefficients with the 

avai lable  results, which were not averaged, shows that the effect of 

the ini t ia l  disturbances is independent of the chain length, and the 

transfer coefficients for different in i t ia l  conditions are mostly close to 

the mean values. The chain length affects the transfer only at low 

interaction energies and for the gas atom velocity range of practical 

interest a consideration of five to six atoms in the linear model gives 
a high degree of accuracy. 

If the light gas particles are mostly reflected with low accom- 

modation, then in the case of interaction of heavy atoms the coeffi- 

cients a n and a are close to unity and at low energies the gas atom 

can be captured. In the last case the gas atom can complete  oscil la-  

tory movements close to the surface for a fairly long t ime (curve 1, 

Fig. 2) or be captured immedia te ly  after the first oscillation (curve 3, 
Fig. 1). 

2. In the two- and three-dimensional  models, as distinct from 

the one-dimensional model,  the potential of a given point A close to 

the surface is made up of the potentials of interaction with all  the sur- 
face points of the la t t ice ,  i .e . ,  

q)(A) =q~(ro) + ~ q>(rn) , 
rt=~0 

q) (A) = q~ (r0) -~ E I~ (rn, m) 

0.8 

6.4 

.~4 ~ 

-12 

Fig. 1 
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-IZ 

Fig. 2 

in the two- and three-dimensional simple cubical  model, respectively. 

Here r0 is the distance to the target atom; n and m are the num- 

bers of the neighbors. Without loss of generali ty,  and purely for sim- 

plicity of the calculations, we will henceforth consider normal frontal 

collisions, and the expressions for the potential o(A) will take the 

form 
cz) 

~p (A) = ~ (r0) + 2 ~ q~ (rn), 

co 

n : l  n>o 

Here r~ = z 2 * (na) 2, rn, m 2 = z 2 .  (n 2 + m27 a2, and z is normal to 

the surface. 

It is difficult,  however, to calculate  analyt ical ly the sums in these 

expressions when ~a(r) is replaced by a potential close to the actual 

one [for instance, the (6-12) Lennard-Jones potential], but this is not 

required, since it is sufficient to have an estimate of the interaction 

forces due to the distant surface atoms. Referring all  the lengths to the 

la t t ice  spacing a and putting the constant o in the Lennard-Jones poten- 
t ia l  equal to a, the function ~(r7 for this potential,  accurate to the 
constant factor, will have the form 

(p (r*) = t / r*12 ~ l / r*e, rn*2 = k2 @ n 2 , 

r n .m*2=kS"~n~-~ - rn  e, n , m = t , 2  . . . . .  

Here k = z / a  is the relat ive distance of the gas atom from the 
target. 

Thus, for a fixed point A ~0(A) is a function only of n in the two- 

dimensional case of the two variables n, m in the three-dimensional 
case. We investigate the first case. 

We consider the partial sum S n = ~(17 + . . .  § ~(n7 of the infinite 
series S~. The residue of this series P'n = ~(n + 17 + ~(n + 27 § . . . .  
owing to convergence of the latter,  satisfies the inequalities 

f (n) dn < Rn < ] (n) dn . 
n+l n (2.2) 

Here ~(rn) --- ~(n), and in the improper integral f(n) will be a 
continuous decreasing function of n, which at n = 1, 2, 3 . . .  assumes 

the values ~(1), ~(2), r . . . . .  

For a specific number 2n of neighbors surrounding the target atom 

the total potential at any fixed point close to the surface is easily 

calculated.  The inequality (2.2) can be used to evaluate the error 

introduced by neglect of the effect of the more distant surface arums. 

The integrals in (2.2) for the Lennard-Jones potential are calculated 
analyt ical ly .  In what follows we need only the second one, 

63 

n 9n  
10k ~ (k s -]- nS)5 --  80k4 (k s @ n2) 4 
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63 n 63 n 63 n 
480k s (k~ + n~) a - -  384k s (k~ + n2) ~ --" 256k~0 (k 2 + n:) + 

n 3n (8~F 6 3 )  n 
+ 4k~(k 2 + n~) 2 + 8k 4 (k 2 + n~)" + -- 2 - ~  are tg  ~ - .  (2.3) 

In the case of in te rac t ion  with a surface the eva lua t ion  of the 
second t e rm in the expression for the poten t ia l  function (2.1) is s i m i -  

lar  to the two-d imens iona l  mode l  (m = 0), and we put the  last  t e rm 

in the form 

n - - i  m = l  n = l  

For this te rm we have  the inequa l i ty  

c~ 

i ) Snmdn <Rn<[ S Snmd n 
n + t  n 

provided that  the in te rna l  sum is c a l cu l a t ed  exac t ly .  If we denote  the 
residue of the in te rna l  series by R m in an approx imate  c a l c u l a t i o n  of 
the la t te r ,  then for R n an eva lua t ion  from above in  the  form 

m 

n m = l  n 

wil l  be va l i d .  If  we assign m and n and fix the va lue  of n each t ime  

we can  c a l c u l a t e  the es t imates  for R m.  Summing  these upper l imi t s  

we obta in  the second t e rm in expression (2.4). After c a l c u l a t i o n  of the 

p a r t i a l s u m  in m the i n t e g r a l i n  the first t e rm is found by the usual 

method and summat ion  and in tegra t ion  can  be in te rchanged.  

Calcula t ions  were carr ied out for the re la t ive  errorAR in the in te r -  

ac t ion  potent ia l  in r e l a t ion  to the number  of t a rge t - a tom neighbors 

considered and are g iven  in Table  2. The re l a t ive  error in the three-  

d imens iona l  model  is a l i t t l e  higher  than  in the two-d imens iona l  

mode l ,  but for a smal l  number  of neighbors i t  is several  t imes  larger .  

The reduct ion of the error with increase  in  the nmnber  of ne ighbor ing 

a toms ,  however ,  is so rapid tha t  for p rac t i ca l  purposes suff icient  a c -  

curacy is a t ta ined  with the same number  of considered neighbors in 

the two- and th ree -d imens iona l  cases .  

Compar ing  the ca l cu la t ed  va lues  of the accommoda t ion  coeff i -  

c ien ts  by using the approx imate  cutoff  po ten t ia l  with and without  

correct ion we note  a qua l i t a t ive  ag reemen t  of the results,  i . e . ,  the  

co l l i s ion  of the gas a tom with the wal l  is affected m a i n l y  by the ne igh-  

bors on the surface closest  to the ta rge t  a tom,  the number of which 

depends m a i n l y  on the parameters  of the potent ia l  and for the known 
potent ia ls  ( inc luding the  Lennard-Jones functions) with a l lowance  for 
the  approx imate  values  of the parameters  themselves  does not exceed  

two or three.  The zone of free mot ion ,  however ,  depends ma in ly  on 
the ve loc i ty  of the inc iden t  gas [1]. 

Thus, neighboring atoms on a solid surface have  less effect  on 
energy and momen tum transfer than atoms of the second and deeper  
layers ,  and the conducted ca lcu la t ions  a l low a quant i ta t ive  assessment  
of this effect .  We note  that  the scheme  of paired in te rac t ion  [1], 
based on dis t inc t ion  of a zone of strong in te rac t ion ,  is s t i l l  va l id  and 

a considera t ion of the nearest  neighbors a t  modera te  ve loc i t i e s  wi l l  

g ive  only a sma l l  correct ion factor to the accommoda t ion  c o e f f i c i e n t s  

/.0 / r 

a ,  3 

0 

0.r 

0 r 80 

Fig. 3 

ca l cu la t ed  in  [1]. 

3. We regard the f ini te  b lock  of solid atoms as a regular  cubic  

l a t t i c e .  We se lec t  one a tom on the surface face and take its equ i l i -  

br ium position as the origin of coordinates  ( X I , X 2 , X 3 ) ,  where the x s- 

axis is normal  to this face,  The l a t t i c e  is suuek  by a flux of gas a toms 

with a Maxwel l ian  distr ibution of ve loc i t i e s  u and we assign to the 

macrove loc i ty  a magni tude  v and two angles  0 and q~, the first of 

which is measured from the normal  to the surface.  

Here o is used as a l inear  sca le .  The i n i t i a l  d i sp lacements  of the 

l a t t i ce  a toms are random, distr ibuted in r e l a t ive  units on the segment  

( - -0 .1 ,  +0.1) and the m a x i m u m  va lue  of the i n i t i a l  ve loc i ty  is de te r -  

mined by the binding energy of the atoms in the l a t t i c e .  The position 

of the gas a tom (r ,@,r  at  the i n i t i a l  instant  is assumed to be on a 

control  surface separated from the plane x s = 0 by a r e l a t ive  dis tance  

d, which is de te rmined  by an eva lua t ion  of the force f ield above the 
surface. In the ca lcu la t ions  d is taken as 2, and the r e l a t i ve  l a t t i c e  

spacing as a = 1. The block of a toms imp l i ca t ed  in the col l i s ion  ac t  

consists of 36 a toms.  Depending on the in terac t ion  forces the control  

surface is divided into ce l l s ,  within which the i n i t i a l  points are dis-  

t t ibuted uniformly.  
The equations of motion for tim in te rac t ing  system are solved on 

a computer  by the Adams method with a va r iab le  step. 
The accommoda t ion  coeff ic ients  for the t ra jectory in the case of 

a fixed i n i t i a l  posit ion of the  gas a tom are obta ined by averag ing  over 
the ve loc i t i e s  of this a tom,  which have  a dis tr ibut ion in the form of 
a Maxwel l ian  function 

[ M V& 

Here T is the tempera ture ,  k is the Bol tzmann constant,  and the  

coeff ic ients  a ,  an ,  a~-, which cha rac te r i ze  the transfer of energy and 
m o m e n t u m  (normal  and t angen t i a l  components ,  respect ive ly)  be tween  

the b e a m  of gas atoms with a prescribed macroscopic  v e l o c i t y  and the 

sol id,  are ca l cu l a t ed  after averag ing  over a l l  possible t ra jec tor ies .  

Table  2 

0.5 LO 2.0  
L 

n ~ m  
A R  n & R ~ m  

1 
2 
3 
5 

IO 
20 

A R  n A R n m  

0.469. i0-4 0.937.10-4 
0.271.10 -~ 0 .405. t0-s  
0.3S5.10-" 0.5t2.10-r 
O,31l.tO-V 0.372.t0-~ 
O.102.10-s O.tt2.tO-S 
0.444.10-1o 0.466.10-1o 

A R  n & R n m  

0.277 0.434 
0.3t8.10-1 0.470.10-1 
0.522-I0-~ 0.731.10-2 
0.496.t0-~ 0 .595. t0  -3 
0 . i65 . i0 -4  0.182.t0-4 
0.524.10-6 0.548.10-6 

0.2~9 
0.733.10-1 

0 .202 .10-1  
0.255.t0-3 
0.101.10-2 
0.336.10 TM 

0.423 
O. 106 
0.268.10-~ 
0.306.t0-2 
O.li i , iO-3 
0.351.10 -~ 

574 



~8 

G~ 

GZI 

~ 2  

0 

01,7 

~5 

0.s 

0 

\ ,  
t \ z  

' / 

~ ~  

s 60 /00 

Fig. 4 

All  the premises and evalua t ions  in the formulat ion of the problem 

are m a d e  on the basis of [1] and sections i and 2 of this paper.  

The following values  of parameters  are used in the ca lcu la t ions :  

v 
~ = 0 i - - 0 5 ,  0 = 0 - 7 0  ~ , 
l = t 0 - 5 0 0 ,  @ = 0  - 3 6 0  ~ , ] / 2  k ~  -- 8' a ~  

We found that  a t  values  of 0 > 35" the a c c o m m o d a t i o n  coeff ic ien ts  

depend strongly on the a z i m u t h a l  angle  ~. Figure 3 shows the depen-  

dences of a ,  ctr ,  and a n,  r espec t ive ly ,  on ~ in the range from 0 to 

90 ~ in  the case of a fixed va lue  of 0 (35~ We note that  the depen-  

dence  of the a c c o m m o d a t i o n  coeff ic ien ts  on the i n i t i a l  energy is d i f -  

ferent for different  values  of the themass  rat io  p. For ins tance ,  for 
= 0.1 the energy a c c o m m o d a t i o n  coef f ic ien t  decreases with increase  

in i n i t i a l  energy,  whereas for p = 0.3,c~ begins to depend on the or ien-  

ta t ion  of the i n i t i a l  vector  v and usual ly  increases with increase in  the 
pa ramete r  l for a lmos t  a l l  ~ and 0.  The re la t ionship  is s imi la r  for 

~ =  0.5. 
The coeff ic ien ts  a r and r n depend in a more complex  manner  

on l and p, as can be seen in  the spec ia l  case and in  Fig. 3. The va r i a -  

t ion of a and a n with the angle  0 is shown in Fig. 4. The numer ica l  
values  of c~, c~r, and a n at  large {9 must  be t rea ted with cau t ion ,  how- 
ever ,  s ince the errors in the ca lcu la t ions  increase  with increase in O. 

In Figs. 3 and 4 the curves are plot ted for the fol lowing values  

of parameters  p and l: 

1 - -  ~ = 0.1, l =  10; 2 - -  ~t = 0 . i ,  l =  i00; 
3 - -  ~ = 0.3, 1 - 10; 4 - -  ~t = 0.3, l =  t00. 

The ove r - a l l  qua l i t a t i ve  picture of va r ia t ion  of the accommoda t ion  

coeff ic ients  for the energy and t angen t i a l  and normal  m o m e n t a ,  c a l -  

cu la ted  with due regard to the c o l l e c t i v i t y  of in te rac t ion  and averag ing  

over the t ra jec tor ies ,  differs a l i t t l e  from the picture  for c o l l e c t i v e  

in te rac t ion  without ave rag ing  [5]. For smal l  0 the averaged values of 

the a c c o m m o d a t i o n  coeff ic ients  are even  quan t i t a t ive ly  closer  to the 

corresponding values  for paired in te rac t ion  and the same potent ia l  than 
the coeff ic ients  ca l cu la t ed  in [5]. With the ind ica ted  parameters  the 

averaged in terac t ion  t i m e  is p rac t i ca l ly  independent  of the se lec ted  

set of parameters .  In addi t ion ,  the a c c o m m o d a t i o n  coeff ic ients  c a l cu -  

la ted for ind iv idua l  t ra jec tor ies  do not have  a great  spread due to the 
Maxwel l ian  ve loc i ty  distr ibution of the inc iden t  molecules  (the m a x i -  
mum dev ia t ion  from the mean  va lue  for a is about 8%). This is ob-  
viously va l id  only for the se lec ted  range of ve loc i t i e s .  It should be 

noted,  however ,  that  with increase  in the angle  0 this r e l a t iomhip  

appears a t  ve loc i t i e s  of the order of the first cosmic  ve loc i ty  and for 

suff ic ient ly  large  angles  of inc l ina t ion  of the inc iden t  flux to the solid 

surface (0 _ 70 ~ the correc t ion  to the a c c o m m o d a t i o n  coeff ic ients  

wi l l  probably be comparab l e  with the va lue  of these coeff ic ients .  The 

ca l cu l a t i on  procedure for such angles differs from tha t  g iven  in  this 

paper.  

It should be noted in conclusion that  a s imi la r  c a l cu l a t i on  of the 

averaged a c c o m m o d a t i o n  coeff ic ien ts  was carr ied out in [6] and agrees 

qua l i t a t i ve ly  with our results.  In this paper,  however ,  the formulat ion 

of the problem,  the ass ignment  of the i n i t i a l  condi t ions,  and the c a l -  

cu la t ion  procedure differ from those in [6], ma in ly  in the fact tha t  

p rac t i ca l ly  any distr ibution of inc iden t  par t ic les  and fairly large  angles 

of i nc idence  0 can  be taken  into account .  In addi t ion,  superfluous 

informat ion  can  be e l im ina t ed .  
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